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In the information security business, 30 years of practical and theoretical research has resulted in a fairly

sophisticated appreciation for how to judge the qualitative level of risk faced by an enterprise. Based upon

that understanding, there is a practical level of protection that a competent security manager can

architect for a given enterprise. It would, of course, be better to use a quantitative approach to risk

management, but, unfortunately, sufficient quantitative data that has been scientifically collected and

analyzed does not exist. There have been many attempts to develop quantitative data using traditional

quantitative methods, such as experiments, surveys, and observations, but there are significant

weaknesses apparent in each approach. The research described in this paper was constructed to explore

the utility of applying the well-established method of expert judgment elicitation to the field of

information security. The instrument for eliciting the expert judgments was developed by two

information security specialists and two expert judgment analysis specialists. The resultant instrument

was validated using a small set of information security experts. The final instrument was used to elicit

answers to both the calibration and judgment questions through structured interviews. The data was

compiled and analyzed by a specialist in expert judgment analysis. This research illustrates the

development of prior distributions for the parameters of models for cyber attacks and uses expert

judgment results to develop the distributions.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In their survey article on Operations Research models in Home-
land Security, Wright et al. [1] identified the area of Cyber Security
as a fruitful and important area for research under the general area
of Critical Infrastructure Protection. The authors cite only a few
articles in the literature that currently deal with operations
research techniques for addressing this problem area, and of these,
only Shindo et al. [2] approached a more formal risk analysis. Thus,
formal risk analysis in the area of Cyber Security is a relatively new
area for the operations research community, though risk analysis in
other areas such as health risk [3], transport risk, [4], flight risk [5],
programmatic risk [6], business process risk [7], and risk in product
development [8] among others, have appeared in the operations
research literature.

In the profession of information security, it has long been a goal
to determine how to measure the value of investments in informa-
tion security-related technology and practices. For example, Davis
et al. [9], in an attempt to develop a security investment valuation

process, examined the behavior of online customers in the wake of
security incidents. For the purposes of their research, they limited
the definition of security incident to that of a disclosed security
breach falling into one of two types: ‘‘hack’’ and ‘‘fraud’’. The results
of their analysis, which was based on the development of a
behavior model through the application of Bayesian Markov Chain
Monte Carlo sampling and subsequent analysis of the model
properties with varying incident rates, reflected no return on
investment proposition for enterprises. In their words: ‘‘our
findings illustrate how difficult it is to convince corporations to
invest in cyber security. The direct financial loss of revenue from
lost customers seems to be not occurring.’’ Their research, while
interesting, is somewhat constrained. The concept of availability is
one that is recognized in the security community as an important
security attribute and yet was not considered to be such in this
research. Further, their financial analysis was based on changes in
stock prices of the corporation reporting the breach without
controlling for any of the myriad of problems that might have
been either supporting or distressing the trading value of the
company. Thus while this research is interesting, it is ultimately of
little use in understanding valuation of security investments.

In a similar study, Khansa and Liginlal [10] attempted to
measure the level of investment in security by using the reported
revenue and stock prices of the market leaders in the information
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security product market as input variables while considering the
monetized impact of highly publicized malicious software attacks
(e.g., only network enabled virus, Trojan horse, and worm inci-
dents). The basis of the monetized equivalencies was the data
provided by the recognizably flawed CSI/FBI surveys of 1998–2006
(see Ref. [11]). While the authors claim that their analysis shows
that they ‘‘demonstrated that with higher investment in informa-
tion security comes more protection and resilience to malicious
attacks’’, what they really showed was that the marketing efforts of
the large security product firms have been successful. Beyond that,
no meaningful conclusions are possible from this study.

The challenge in determining a value for information security
measures lies in the fact that success is measured through events
not occurring, or at least occurring infrequently, a situation which
might have resulted from chance rather than effective security.
Naturally, the attention of the information security profession is
focused on trying to quantify probabilities of events occurring,
which would provide managers with a way to compare their
incident rates with a known probability of incidents. This would
inform and enable the ability to use annualized loss expectancy
(ALE) or other well-understood risk-impact equations as a measure
of value in security investments, which is not possible without such
information.

There have been a variety of attempts to gather a sense of what
is occurring in security-related incidents. One, the Honeynet
Project [12], relies on a set of computer systems that were
specifically deployed to attract external attacks. The use of
Honeynet data is extremely important as each participating
computer in the Project is instrumented and used only to collect
information on attacker methods over the internet. The data are
extremely good for understanding network attack patterns and
attacker techniques. It is not good; however, at providing insight
into the parts of information security that it is not designed to
address: those resulting from non-networked based attacks, such
as insider abuse of access, theft of hardware, destruction of system
components, or compromise of legitimate login credentials.

Other research efforts in the development of risk estimations
have attempted to collect empirical data to be used in the
characterization of risk in security. Karabacak and Sogukpinar
[13] developed what they term the Information Security Risk
Analysis Method (ISRAM), which is a survey-based tool to collect
incident rates for use in standard risk calculations. The method is
mathematically sound but limited by the need for incidents to have
been both detected and understood to be incidents. As noted
previously, neither of these characteristics is necessarily always
true. Clever attackers are always attempting to find ways to attack
without being detected and there is reason to believe that some, at
least, have been successful. Certainly, vulnerability researchers
such as Miller [14] specialize in finding what are called ‘‘zero day’’
vulnerabilities: vulnerabilities for which solutions are not avail-
able. These types of vulnerabilities have a great deal of value in the
security community (on both sides).

Bodin et al. [15] used the Analytic Hierarchy Process (AHP) to
weight order the elements of a composite metric for risk analysis.
The composite metric consists of three elements: expected loss,
expected severe loss, and standard deviation of loss. The use of this
composite metric is intended to assist in assessing the risk
associated with proposed solutions to security challenges. This
assumes, again, that the ability to characterize the risk potential in
terms of loss expectancy is possible from any reasonable perspec-
tive. As discussed above, this is not a given ability.

Additionally, there are several annual surveys conducted where
respondents are asked to identify numbers, types, and impacts of
incidents. Baker et al. [16] proposed an event-chain risk manage-
ment model in which threats are ‘‘measured as rates per year and
then converted into outcomes by specifying the number or extent

per year.’’ Again, this is limited because of the focus on threats that
are both known and measurable, a dubious proposition at best.
Sigonen et al. [17] focused less on counting threat incidents and
more on measuring compliance with security policies as a surro-
gate variable for risk estimation. In some sense, this may be a more
appropriate measure in that there is some basis in belief that
compliance with security policies may reduce the exposure of an
enterprise to security problems.

All of these efforts provide some insight, but none provides the
comprehensive data required for a scientific treatment of the
problem.

Gathering the probabilities using an empirical approach is
extremely problematic, however. Simply collecting the number
of incidents that are detected, through any detection means, by
definition measures only a percentage – an unknown percentage –
of the true incident rate. This is true because there is no way to
know how many incidents were not detected, nor what their
impacts were. Putting a captive system in harm’s way and
collecting information on the number of incidents that occur on
that system only reflects the detectable attacks on the system. This
provides only a little insight into the incident rate for highly
dynamic interactive systems used by people for business processes.

The research reported in this article was an attempt at a novel
approach to develop and to quantify a probability model associated
with security-related incidents. In this research, the method of
expert judgment was used to provide the quantification. Expert
judgment has been successfully applied in many fields (see for
example, [18]); however, this is the first time it has been used in the
field of information security.

The research was carried out in the Washington, D.C., (USA)
metropolitan area. Three groups participated: a control group, a set
of experts, and a group of students studying information security.
This paper deals with the analysis of the experts’ contributions.

2. An overview of a model for cyber attacks

When trying to model a phenomenon whose probabilistic struc-
ture changes over time, a natural model to use is a stochastic process.
Stochastic process models can range from very basic to very complex.
A particularly robust and yet mathematically tractable class of
stochastic processes is the Nonhomogeneous Poisson Process (NHPP).
Readers interested in a full mathematical treatment are referred to
C- inlar [19]; here only the basic properties will be presented. A NHPP is
defined by a rate of occurrence of events, m(t|y), which is often a
parametric function depending on the set of parameters y. For the
problem at hand, these occurrences would be cyber attacks. Sugges-
tions for such rates are given in Fig. 1 below—these include a constant
rate of attack (referred to as a Homogeneous Poisson Process or HPP
model), a decreasing rate of attack, an increasing rate of attack, and an
attack rate that increases to a peak and then decreases. The attack rate
modeling possibilities are limitless.

Given a rate of occurrence, the NHPP, N(t) denoting the number
of occurrences in the interval [0,t], has the following useful
properties

(P1) The mean or expected number of occurrences in [0,t] denoted
M(t|y) is given by MðtjyÞ ¼ E½NðtÞjmðtjyÞ� ¼

R t
0 mðujyÞ du

(P2) The probability mass function for the number of occurrences
in [0,t] is given by PrfNðtÞ ¼ njMðtjyÞg ¼ ½ðMðtjyÞÞn=n!�e�MðtjyÞ

Additionally for any time sot

(P3) The Mean or Expected Number of Occurrences in [s,t] is
M(t|y)�M(s|y)

(P4) The Probability Mass Function for the Number of Occurrences
in [s,t] is given by PrfNðtÞ�NðsÞ ¼ njMðtjyÞg ¼ ðð½MðtjyÞ�
MðsjyÞ�nÞ=n!Þe�½MðtjyÞ�MðsjyÞ�
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(P5) Given M(t|y) and sot, N(s) and N(t)�N(s) are independent
random variables and thus Pr{N(t)¼n,N(s)¼k|M(t|y)}¼
Pr{N(s)¼k|M(t|y)}P{N(t)�N(s)¼n�k|M(t|y)}

(P6) Given two independent NHPPs N1(t) and N2(t) with respective
mean value functions M1(t|y) and M2(t|y), the superimposed
process given by N1(t)+N2(t) is a NHPP with the mean value
M1(t|y)+M2(t|y)

(P7) Given two independent NHPPs N1(t) and N2(t) with respective
mean value functions M1(t|y) and M2(t|y),

Pr N1ðtÞ ¼ kjN1ðtÞþN2ðtÞ ¼ n,M1ðtjyÞ,M2ðtjyÞ
� �

¼
n

k

� �
M1ðtjyÞ

M1ðtjyÞþM2ðtjyÞ

� �k M2ðtjyÞ
M1ðtjyÞþM2ðtjyÞ

� �n�k

Often the functional form of M(t|y) can be specified but the
parameters y must be determined through statistical inference
procedures such as maximum likelihood or Bayesian estimation.
Maximum likelihood estimation is performed by defining the
likelihood function for observed data and estimating the value of
the parameters y that maximize the likelihood. The likelihood
function for a NHPP process given the occurrence times T1, y, Tn,
observed in an interval [0,T*], denoted L(y|T1, y, Tn) is given by

LðyjT1, . . . ,TnÞp
Yn

i ¼ 1

mðTijyÞe�MðT�jyÞ ð1Þ

Thus, the maximum likelihood technique requires reliable
observable data often in large quantities. This is generally not
the case in a risk assessment situation and certainly not the case for
the problem at hand.

Bayesian estimation is performed by defining a joint prior
distribution for the parameters y, g(y), and estimating y as the
joint mean, median or mode of the distribution. This estimation
procedure does not require data, but rather specification of the prior
distribution through expert judgment. However, if data becomes
available, a combined estimate is obtained by replacing the prior
distribution by the posterior distribution, which is defined as

gðyjT1, . . . ,TnÞpLðyjT1, . . . ,TnÞgðyÞ ð2Þ

One advantage of Bayesian estimation is that predictive infer-
ence is straightforward, for example without observing any data

E½NðtÞ� ¼

Z
E½NðtÞjMðtjyÞ�gðyÞ dy¼

Z
MðtjyÞgðyÞdy ð3Þ

and

PrfNðtÞ ¼ ng ¼

Z
PrfNðtÞ ¼ njMðtjyÞ�gðyÞdy ð4Þ

and given data, predictive inference is obtained as the above with
the posterior distribution rather than the prior distribution. The
disadvantage of Bayesian inference is that it requires the specifica-
tion of a prior distribution. This often requires the elicitation,
codification, and combination of expert judgment, which can often
be a daunting set of tasks. A procedure for accomplishing such a
task is discussed in the next section.

3. Expert judgment analysis

Expert judgment analysis is designed to elicit, codify, and
combine the knowledge of people who have significant experience
or expertize in a defined field in order to assess unknown quantities
or parameters. It has been used in such wide ranging endeavors as
assessing risks to the Washington State Ferry System [20], to
nuclear power plant components [21], and to genetically modified
crops [22]. The appropriate use of expert judgment is justified
when quantitative data is missing, of dubious quality, or is
insufficient for obtaining reasonable statistical results.

There are many methods for eliciting, codifying, and combining
expert judgment (see for example, [18]). In combining expert
judgment, often a weighted average of expert inputs is used and
much research has centered on determining appropriate weighting
schemes. For this research effort, the classical model of Cooke [18] was
chosen. The reason for selection of this model is based on its extensive
application in the field of risk analysis (see for example, [23]) and its
demonstrated superior performance over the often used simple
averaging technique (see for example, [24,25]). The model is sum-
marized below, while a more thorough treatment is given in Ref. [18].

In the classical model, experts provide a distribution for
unknown quantities by specifying 5th, 50th and 95th percentile
values for the quantities of interest. The combination of the expert
judgment is obtained as a convex combination of the expert
distributions where the experts’ weights are derived from the
experts’ responses to a set of seed variables whose values are
known by the analyst and which are used to ‘‘calibrate’’ the
accuracy of the experts’ opinions. There are several advantages
to this approach over the equal weighting of expert judgments.
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Fig. 1. Examples of rate of occurrence. (a) Constant: m(t|b)¼b, (b) Exponential Decay: m(t|b, f)¼bfe�ft, (c) Power: m(t|b, f)¼bftf�t, (d) Phase: mðtjb,m,fÞ ¼ ðb=ð
ffiffiffiffiffiffi
2p
p

fÞÞ

e�ð1=2Þððt�mÞ=fÞ2 .
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3.1. The classical model

The process of expert judgment elicitation in the classical model
follows several steps. First, the elicitation is prepared and experts
are identified and selected. Then each expert is interviewed, alone
and without knowledge of other experts to be interviewed or their
responses. Experts are asked to specify 5th, 50th, and 95th
percentile values for a series of quantities, some of direct interest
and some related to the seed values used to calculate the weights
for combining the expert judgment. Finally, the data are analyzed.

The analysis proceeds in two phases. First, an analysis is
performed on the expert responses to the seed or calibration
variables. A weight is assigned to each expert based on the expert’s
calibration and information scores. Calibration relates to how well
the expert has specified his/her percentiles. A well calibrated
expert will have approximately 5% of the seed variable realizations
lower than his/her 5th percentile values, 45% of the seed variable
realizations between his/her 5th percentile and 50th percentile
values, 45% of the seed variable realizations between his/her 50th
percentile and 95th percentile values, and 5% of the seed variable
realizations greater than his/her 95th percentile values. Referring
to these intervals as interval 1 through 4, the calibration score is
calculated for the seed variables using relative information, I(s,p),
given by

Iðs,pÞ ¼
X4

i ¼ 1

si lnðsi=piÞ ð5Þ

where si is the observed relative frequency of interval i from the
seed variables and p1, p2, p3, and p4 are the values .05, .45, .45, and
.05, respectively. It can be shown that when the number of seed
variables, N, is reasonably large, the value 2NI(s,p) has a chi-squared
distribution with 3 degrees of freedom, w2

ð3Þ. The calibration score,
cal, for each expert is calculated as

cal¼
Prfw2

ð3Þ42NIðs,pÞg if Prfw2
ð3Þ42NIðs,pÞg4a

0 otherwise

(
ð6Þ

That is, a minimum acceptable calibration score a is specified,
otherwise the expert receives zero weight in the analysis.

In order to calculate the information score for each expert, the
complete expert distribution must be defined. This is obtained by
taking, for each seed variable, the known value, say r, and the
elicited 5th, 50th, and 95th percentile values, say q5,j, q50,j, and q95,j,

respectively for each expert j, and defining 0th and 100th percentile
point for the experts. This accomplished by defining

qL ¼minfr,q5,1, . . . ,q5,eg

qU ¼maxfr,q95,1, . . . ,q95,eg ð7Þ

where e is the number of experts and then specifying a k% overshoot
below qL and above qU for estimating the 0 percentile and 100
percentile point, respectively

q0 ¼ q5�ðk=100ÞðqU�qLÞ

q100 ¼ q95þðk=100ÞðqU�qLÞ: ð8Þ

The value of k is often set at 10. A complete expert distribution of
the quantity is generated via linear interpolation between the five
points as illustrated in Fig. 2. Calculated in this manner, the expert’s
distribution is minimally informative with respect to the uniform
background measure. That is, we obtain a distribution which
adheres to the expert’s specified percentiles but is uniformly
distributed between the percentiles thus imposing no additional
assumptions. For the quantities of interest (that is, not including
the seed variables), the bounds of the expert distributions are
calculated using (7) and (8) excluding the value r (since these are
the questions of interest as opposed to seed questions, there is no
known realization).

The information score measures the deviation of the expert’s
distribution with respect to some meaningful background mea-
sure, which in this case is taken to be the uniform distribution over
the entire range [q0,q100]. (see Fig. 3). As such, it is a measure of the
expert’s certainty in his/her answers (see for example, [26]). The
information measure is calculated again using relative information

inf ¼ Iðh,pÞ ¼
X4

i ¼ 1

pi lnðpi=hiÞ ð9Þ

where

h1 ¼ FUðq5Þ�FUðq0Þ ¼
q5�q0

q100�q0

h2 ¼ FUðq50Þ�FUðq5Þ ¼
q50�q5

q100�q0

h3 ¼ FUðq95Þ�FUðq50Þ ¼
q95�q50

q100�q0

h4 ¼ FUðq100Þ�FUðq95Þ ¼
q100�q95

q100�q0
ð10Þ

and FU is the CDF of the uniform background measure. The
information score for each expert can be calculated as the average
seed variable information score or can be calculated individually
for each quantity of interest. An overview of the concepts of these
scores is presented in Fig. 4.

The final weight for each expert is determined as the normalized
(weights sum to one) product of the calibration score and the
information score. The determination of the value of a is selected so
that a fictitious expert, whose distribution would be the resultingFig. 2. Example expert distribution for unknown quantity.

Fig. 3. Comparison of expert distribution with background measure.
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weighted mixture of the expert distributions, would receive the
highest possible weight if added to the expert pool.

The second phase of the analysis addresses the actual quantities
or parameters of interest. In this phase, the experts’ distributions
for the quantity of interest are combined using weights obtained.

4. The research

The purpose of this research was to use expert judgment
elicitation to provide data to develop a model for evaluating the
following questions:

� How often does a computer or system come under attack?
� How many of those attacks are successful?
� It is worthwhile to make a large investment to protect a system

from attacks?
� How probable is a successful attack under different protection

scenarios?

These questions are problematic in the information security
realm because of several complications. First, success is defined as
nothing bad happening, or at least bad things happening relatively
infrequently. But if no (few) attacks are detected, does that really
mean nothing bad is happening? Or could it mean that attacks are
occurring but are not being detected? Or could it simply be
coincidence that no attacks are observed? Second, the challenge
of measuring the number of attacks is daunting. In a single
enterprise, the best that can be determined is how many attacks
have been detected; however, it is difficult to know what percen-
tage of the total number of attacks this represents. Within a large
interconnected information infrastructure consisting of many
enterprises, the data may not be available to determine even the
total number of detected attacks. There are many strong impera-
tives for enterprises to not reveal detected (successful or other-
wise) attacks. One of these is that it may encourage other attackers
to choose that enterprise as a target. Another is that revealing such
problems could have a deleterious effect on the perceptions of the
customer base for the enterprise which could result in criminal or
civil legal or regulatory liability, damaged reputation, loss of
customer confidence, reduction in stock prices, or loss of market
share.

There are many examples. A serious data breach at the retailer TJ
Maxx began in 2005 and continued until 2007. One or more hackers
stole 45.7 million credit card and debit card numbers that had been
used by customers for purchases. The hackers also stole Social

Security numbers, driver’s license numbers, and military identifi-
cation numbers. Fraud based on the stolen information occurred in
at least seven States and eight foreign countries. The total impact on
TJ Maxx is unknown but estimates are that an amount exceeding
US$1 billion will be needed for security upgrades, consultants, legal
fees, and public relations, but not including legal liabilities.
Upwards of 21 lawsuits have been filed seeking damages from
the company that will increase the loss (see for example, [27]).

In another example, Hewlett-Packard’s Chairwoman faced
criminal charges following her response to a leak of information
by a director of the company. She hired a team of security
professionals to spy on the communications in the personal
accounts of ten other directors, including both email and telephone
calls from their homes and private cell phones. She found the
source of the leak, but he refused to resign. Another director,
however, did resign, triggering a requirement for an 8-k report to
the SEC, but the initial filing ignored the SEC requirement to report
a disagreement regarding operation, policies or practices of the
company. The impacts extend beyond the boardroom and Patricia
C. Dunn’s suitability for the Chair—she was ousted in 2006. Civil
lawsuits for invasion of privacy, intentional infliction of emotional
distress, and unfair business practices have been filed (see for
example, [28–30]) Dunn and four others have been charged with
criminal fraud and conspiracy (see for example, [31]).

In the information security business, 30 years of practical and
theoretical research has resulted in a fairly sophisticated apprecia-
tion for how to judge the qualitative level of risk faced by an
enterprise. This includes how to identify and mitigate vulnerabil-
ities, how to identify and constrain threats, how to identify
appropriate countermeasures, and sometimes how to quantify
the exposure factor related to the impact of a successful attack on a
specified information asset or system. Based upon that under-
standing, there is a practical level of protection that a competent
security manager can architect for a given enterprise. In other
words, if the responsible manager is appropriately educated and
adequately funded, it is possible to take reasonable steps to protect
information assets and systems, even if the information that would
permit optimization is not available.

However, not all managers are equally educated or experienced,
nor are all adequately funded. There remains a continual challenge
to explain and defend security expenditures to higher-level
managers, who generally demand a business case analysis. Making
this business case based on qualitative data is difficult. Unfortu-
nately, quantitative data does not exist. There have been many
attempts to develop quantitative data using traditional quantita-
tive methods, such as experiments, surveys, and observations, but

Fig. 4. An Illustration of calibration and information concepts.
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there are significant weaknesses apparent in each approach. With
experiments, the resultant data to date only reflects the controlled
responses to known and scripted attacks. With surveys, the data
only reflects the knowledge and awareness of the respondents.
Furthermore, many of the surveys have significant structural
weaknesses that subvert any derived meaning or utility for
quantitative analyzes (see for example, [11]). Quantitatively
derived models only approximate what reality might truly be,
and do that reflecting the biases or limitations of the model
developers.

This research was constructed to explore the utility of applying
the well-established method of expert judgment elicitation to the
field of information security. The instrument for eliciting the expert
judgments was developed by two information security specialists
and two expert judgment analysis specialists. The resultant
instrument was validated using a small set of information security
experts. The final instrument was used to elicit answers to both the
calibration (seed variable) and judgment questions through struc-
tured interviews. An expert judgment analysis specialist conducted
the interviews. The data were compiled and analyzed by the
specialist in expert judgment analysis. In all, the research was
conducted over the period of six months.

5. The research instrument

Experts were asked a series of 31 questions broken up into four
sections. The first section contained 10 seed variable questions. The
questions, presented in Table 1 with their realizations, were
developed by the two information security specialists with the
notion that information security experts did not have direct access
to the actual answer but had adequate knowledge to make the
required assessments.

Sections 2 through 4 contain the same six questions but the
expert was asked to consider the questions under the 3 separate
scenarios presented in Table 2 below. These scenarios represent the
best possible, SBP, the most likely, SML, and the ‘‘honey pot’’, SHP,
scenarios. Sections 2 and 3 also contained a question about the

obsolescence time of security software. These questions, presented
in Table 3, form the basis of the analysis.

For questions Q1, Q2, Q3, Q4 and Q7, experts were permitted to
use any time units that they felt comfortable with, however, all
values were converted to hours in the analysis.

6. Expert judgment analysis

The analysis of expert judgment using the classical model was
performed using Microsoft Excel . Fig. 5 displays ‘‘range graphs’’ for
the 13 experts’ responses to several seed variables. The 5th and
95th percentile values supplied by the experts are denoted by ‘‘|’’
and their median values by ‘‘X’’. The calculated upper and lower
bounds are denoted by ‘‘�’’ and the realization by a dashed line.
Note that the bounds calculated in Eq. (8) were truncated to
represent reality. That is, for example, questions regarding prob-
ability values were restricted to [0,1]. The potential problem with
equal weights can be seen in Fig. 5 where small groups of experts
have specified a significantly different range of uncertainty for
the seed variables. An equally weighted combination of expert
distributions could thus tend to have more spread or be less
informative. In the classical method, experts who habitually provide
less informative assessments are typically given less weight.

Based on the expert responses to the seed variables, the
calibration and information scores were obtained for the experts
and are presented in Table 4 below with weights determined by
these scores. Experts were given IDs to preserve anonymity. The
range of calibration is given by expert 8 with the lowest score to
experts 11 and 12 with identical high scores. The range of
informativeness is given by expert 4 with the lowest score to
expert 5 with the highest score. It can be seen that the range of
calibration scores is more pronounced that that of the information

Table 2
Section II–IV scenario descriptions.

Section Notation Scenario description

II SBP This section addresses your expectations given that all

reasonable steps have been taken to protect information

assets and systems from attack—that is, that the protection

is comparable to the best available protection for systems

and networks that is in use today and competently

managed.

III SML This section addresses your expectations given that

average or usual care has been taken to protect information

assets and systems from attack—that is, that the protection

is comparable to what you would expect to find in most

systems and networks in use today.

IV SHP This section addresses your expectations given that

information assets and systems are competently managed

but do not employ any protection systems.

Table 1
Seed variable questions and their realizations.

Question Realization

If today you are using a 128-bit cryptographic key, how many

bits would you need to use in six years in order to maintain

the same level of security as you enjoy today?

130

How likely is an attack on a system to be successful? 0.65

If a system is successfully attacked, how likely is it that the

attack will be detected?

0.04

How likely is a successful attack on a system to be detected

and reported to authorities by managers responsible for

the security of the system?

0.01

How long would it take a brute force attack by a single

computer on a 56-bit cryptographic key to recover the

key? (Hours)

72

How long would it take a brute force attack by a distributed

network of computers on a 56-bit cryptographic key to

recover the key? (Hours)

22

How much more attack activity can we expect this year than

last in attack per company per week?

0.2

How much more likely, if at all, is a company with more than

500 employees to be attacked than a company with less

than 500 employees?

0.5

How much more often are public companies attacked than

private or not-for profit companies?

2

What percentage of vulnerabilities in computer systems and

networks are easy to exploit, requiring only moderate

computer skills?

70%

Table 3
Section II–IV scenario questions.

Notation Scenario II, III, and IV questions

Q1 How long do I have to wait before the first attack?

Q2 How long do I have to wait after the first attack before the second

attack occurs?

Q3 How long do I have to wait before the first successful attack?

Q4 How long do I wait after the first successful attack before the second

successful attack occurs?

Q5 How many attempted attacks can you expect in one month?

Q6 How many successful attacks can I expect in one month?

Additional Question for Scenario II and III
Q7 How fast does the security software become obsolete?
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score. Generally speaking, calibration is more important than
informativeness. The experts who stood out as having both good
informativeness scores and high calibration values were experts 11
and 12. All other experts received weight 0. It is not unusual for this
technique to assign a zero weight to a sizeable number of experts.

The expert and combined expert percentile values for the
questions of interest are presented in Table 5. Several observations
are worth noting. First, the expert distributions for questions Q1,
Q2, Q5, Q7 are identical regardless of the scenario. This would be
expected as it refers to external behavior not affected by the change
in the scenario. This result shows consistency among the experts.
Expert distributions for questions Q3, Q4, and Q6 do differ and
display the proper ordering as we move from the more protected to
a less protected scenario.

Another observation worth noting is that the distance between
the scenario 1 distributions and distributions for scenarios 2 and
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Fig. 5. Range graphs for seed variable questions.

Table 4
Expert scores for seed variables.

Expert
ID

Calibration
score

Information
score

Unnormalized
weight

Normalized
weight

1 4.559E�04 3.4271 0.000 0.000

2 1.362E�06 4.0296 0.000 0.000

3 1.397E�02 2.7781 0.000 0.000

4 4.559E�04 1.9192 0.000 0.000

5 2.083E�05 7.1414 0.000 0.000

6 1.066E�06 3.0101 0.000 0.000

7 1.102E�03 2.7624 0.000 0.000

8 5.448E�08 2.0835 0.000 0.000

9 4.704E�02 2.4445 0.000 0.000

10 4.078E�06 3.6292 0.000 0.000

11 3.135E�01 2.4765 0.776 0.543

12 3.135E�01 2.0829 0.653 0.457

13 1.579E�05 2.6472 0.000 0.000
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3 is more pronounced than the distance between the distributions
for scenario 2 and 3. A first order conclusion is that there are
benefits from even some protection. The marginal return for
increasing levels of protection is not as well pronounced. This
analysis should be the subject of future research.

7. Using expert judgment results

The stated purpose of this research was to illustrate the
development of prior distributions for the parameters of NHPP
models for cyber attacks, thus providing a fully quantified model

for use in risk analysis. The expert judgment results from the
previous section can be used to develop just such distributions for
both HPP and NHPP forms.

7.1. HPP for successful and unsuccessful attacks

For the first model, it will be assumed that the rate of successful
and unsuccessful attacks (denoted bSuccess and bUnsuccess, respec-
tively) remains constant over time as in model ‘‘a’’ in Fig. 1. That is,
the number of successful and unsuccessful attacks, respectively,
are given by an HPP and thus via (P6) the number of attacks is also

Table 5
Expert and combined expert percentiles and the questions of Table 3.

Question How long do I have to wait before the first attack (in hours)?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 1.60E�02 8.30E�02 1.00E+00 1.60E�02 8.30E�02 1.00E+00 1.60E�02 8.30E�02 1.00E+00

12 5.55E�04 2.40E+01 7.20E+01 5.55E�04 2.40E+01 7.20E+01 5.55E�04 2.40E+01 4.80E+01

Combined 1.59E�02 8.28E�01 7.20E+01 1.59E�02 8.28E�01 7.20E+01 1.59E�02 8.28E�01 4.80E+01

Question How long do I have to wait after the first attack before the second attack occurs (in hours)?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 1.60E�02 8.30E�02 1.00E+00 1.60E�02 8.30E�02 1.00E+00 1.60E�02 8.30E�02 1.00E+00

12 1.38E�03 3.00E+01 1.20E+02 1.38E�03 3.00E+01 1.20E+02 1.38E�03 3.00E+01 1.20E+02

Combined 1.59E�02 8.33E�01 1.20E+02 1.59E�02 8.33E�01 1.20E+02 1.59E�02 8.33E�01 1.20E+02

Question How long do I have to wait before the first successful attack (in hours)?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 2.40E+01 7.68E+02 9.22E+03 2.40E+01 1.92E+02 3.84E+02 1.66E�01 3.33E�01 5.00E�01

12 4.80E+01 3.84E+02 7.68E+02 1.00E+00 8.00E+00 7.20E+01 4.80E+01 1.92E+02 5.04E+02

Combined 3.82E+01 5.30E+02 9.15E+03 1.88E+00 6.54E+01 3.84E+02 1.82E�01 4.89E�01 4.96E+02

Question Hong long do I have to wait after the first successful attack before the second successful attack occurs (in hours)?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 2.40E+01 7.68E+02 9.22E+03 2.40E+01 1.92E+02 3.84E+02 1.66E�01 3.33E�01 5.00E�01

12 7.20E+01 7.68E+02 1.54E+03 2.40E+01 1.20E+02 2.40E+02 7.20E+01 3.36E+02 7.68E+02

Combined 4.76E+01 7.68E+02 9.16E+03 2.40E+01 1.53E+02 3.84E+02 1.82E�01 4.89E�01 7.59E+02

Question How many attempted attacks can you expect in one month?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 1.00E+03 1.00E+04 2.00E+04 1.00E+03 1.00E+04 2.00E+04 1.00E+03 1.00E+04 2.00E+04

12 5.00E+00 3.50E+01 1.00E+02 5.00E+00 3.50E+01 1.00E+02 5.00E+00 3.50E+01 1.00E+02

Combined 8.93E+00 2.43E+03 2.00E+04 8.93E+00 2.43E+03 2.00E+04 8.93E+00 2.43E+03 2.00E+04

Question How many successful attacks can I expect in one month?

Scenario 1 2 3

Expert 5% 50% 95% 5% 50% 95% 5% 50% 95%

11 0.00E+00 1.00E+00 5.00E+00 5.00E+00 1.00E+01 2.00E+01 5.00E+02 1.00E+03 2.00E+03

12 0.00E+00 2.00E+00 7.00E+00 0.00E+00 5.00E+00 1.00E+01 1.00E+00 3.00E+00 1.00E+01

Combined 0.00E+00 1.63E+00 7.00E+00 5.83E�01 7.72E+00 2.00E+01 1.26E+00 5.79E+02 2.00E+03

Question How fast does the security software become obsolete (in hours)?

Scenario 1 2

Expert 5% 50% 95% 5% 50% 95%

11 4.61E+03 9.22E+03 2.77E+04 4.61E+03 9.22E+03 2.77E+04

12 4.61E+03 9.22E+03 1.84E+04 4.61E+03 9.22E+03 1.84E+04

Combined 4.61E+03 9.22E+03 2.65E+04 4.61E+03 9.22E+03 2.65E+04
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an HPP with rate bAttack. For this model, prior distributions for
parameters for the attack and successful attack processes are
directly obtained from Q5 and Q6. That is, Q5 addresses the average
number of occurrences per month for the combined successful and
unsuccessful attacks and Q6 addresses the average number of
occurrences of successful attacks per month. Prior best estimates
for bAttack and bSuccess for each scenario can be directly obtained as
the median estimate for question Q5 and Q6, respectively, and are
presented in Table 6.

Several additional quantities may be obtained through simula-
tion. For example, the probability distribution for the probability of
a successful attack may be obtained by simulation using the
distributions for bAttack and bSuccess for each scenario and calculat-
ing, using (P7)

Pr Successful Attack
� �

¼
bSuccess

bAttack

ð11Þ

Simulation using the expert distributions is quite simple as it
has finite support and the cumulative distribution is a linear
interpolation between points. Noting that bAttackZbSuccess when
simulating (11) above, the procedure would be to first simulate
bAttack and then simulate bSuccess from the conditional distribution

PrfbSuccessobjbSuccessobAttackg ð12Þ

An example calculation is given in Table 7 below.
Probability distributions for the number of attacks or the

number of successful attacks within a specified time frame may
be similarly obtained from (P4) through simulation by using the
appropriate distribution of b and calculating

Pr NðtÞ�NðsÞ ¼ n
� �

¼
ðbðt�sÞÞn

n!
e�bðt�sÞ ð13Þ

for the probability that the number of attacks in the interval [s,t] is
n. Example calculations for the probability distribution for the
probability of no successful attacks in a month is provided in
Table 8.

7.2. NHPP for successful and unsuccessful attacks

Next we address the model where attack rates are time
dependent. Although there are several available models, model
‘‘c’’ in Fig. 1 is selected for illustrative purposes. Assuming that both
the total number of attacks and the number of successful attacks
can be modeled with a power intensity NHPP where the parameters
to be estimated are denoted (bAttack, fAttack) and (bSuccess, and
fSuccess) for the number of attacks and number of successful
attacks, respectively. However, the estimation is more difficult.

To construct the simulation, we obtain the best estimates from
the experts of the times T1

(A) and T2
(A), the time until the first attack

and the time between the first and second attack and of the times
T1

(S) and T2
(S), the time until the first successful attack and the time

between the first successful and second successful attack. These are
obtained from the answers to Q1–Q4, respectively. These are
equated to their theoretical mean values obtained from the NHPP
with power intensity.

Consider a NHPP with rate m(t). If Ti denotes the ith interarrival
time and Si denotes the ith arrival time, then the marginal
distribution of Sn is given by van Noortwijk et al. [32] as

fSn
ðyÞ ¼

1

ðn�1Þ!

Z y

0
mðtÞdt

� �n�1

mðyÞe�
R y

0
mðtÞ dt

ð14Þ

Since it is assumed that m(t)¼bftf�1 the respective densities of
S1 and S2 may be calculated

fS1
ðyÞ ¼fbyf�1e�byf

fS2
ðyÞ ¼ ðbyfÞfbyf�1e�byf ð15Þ

The first distribution is the well known Weibull distribution and
the expected value expression is

E½Y � ¼ bð�1=fÞG 1þ
1

f

� �
ð16Þ

Likewise it can be shown that the expectation for the second
distribution can be expressed as

E½Y � ¼ bð�1=fÞG 2þ
1

f

� �
ð17Þ

Thus to simulate from the joint distribution of f and b we use
the following procedure

1. Simulate t1 and t2 from the experts’ distribution for time until
first and time between the first and second attack.

2. Calculate s1¼t1 and s2¼t1+t2.
3. Equate

s1 ¼ E½S1� ¼ bð�1=fÞGð1þ1=fÞ

s2 ¼ E½S2� ¼ bð�1=fÞGð2þ1=fÞ ¼ ð1þ1=fÞs1

4. Calculate

f¼
1

ððs2=s1Þ�1Þ

b¼
Gð1þð1=fÞÞ

s1

� �f

The distribution of f is important. If the distribution is concen-
trated about 1, that would indicate that a HPP was appropriate.

Simulated distributions for both the shape parameter,f, and scale
parameter,b, were obtained. Selected percentiles are given in Table 9.
Both distributions show considerable variability which is desirable for
a prior distribution in that it does specify overconfidence in the prior

Table 7
Percentiles of the distribution of probability of successful attack.

Scenario 5% 50% 95%

1 0.00E�00 4.60E�04 1.14E�01

2 1.02E�05 2.00E�03 2.93E�01

3 4.91E�05 1.08E�01 8.21E�01

Table 8
Percentiles of the distribution of probability of no successful attacks in a month.

Scenario 5% 50% 95%

1 9.51E�04 1.98E�01 1.00E+00

2 2.17E�09 4.81E�04 5.64E�01

3 0.00E�00 1.09E�251 1.29E�01

Table 6

Estimates of b for successful and unsuccessful attack processes.

Attack Scenario

1

success

Scenario

2

success

Scenario

3

success

2430.41 1.63 7.72 579.24
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estimates. Most interesting is the distribution of the shape parameter
which is not concentrated about 1. This would indicate that the NHPP
is more appropriate than the HPP as a model.

Next we use the distribution to simulate the expected number of
attacks as a function of time. Specifically we consider, for each
scenario, the expected number of attacks and the expected number of
successful attacks in 1, 2, 6, and 12 months, respectively, where
1 month¼28 days. Fig. 6 illustrates the usual increase in uncertainty
as we predict further ahead in time. This figure is for the number of
attacks but similar figures can be presented for the number of
successful attacks under each scenario. Note that the 25th percentile
is masked almost completely by the 50th percentile.

Fig. 7 compares the median number of successful attacks of
scenarios 1, 2, and 3 as a function of time. As with the HPP results,
it is apparent that at least some protection can make a considerable
difference in the number of successful attacks. For example, it can be
seen from Fig. 7 that the ratio of the number of successful attacks
between scenario 1 and 2 is approximately 3. The ratio of the number of
successful attacks between scenario 2 and 3 is an order of magnitude.

8. Conclusions

In information infrastructures that enjoy a sound, well-mana-
ged information security program, incidents are rare, and,

consequently, statistical information that can be used for quanti-
tative risk management evolves so slowly that it cannot keep up
with the evolution of the threat environment. The research
described in this paper was constructed to explore the utility of
applying the well-established method of expert judgment elicita-
tion to the field of information security, providing an alternative
methodology for determining probabilities of successful attacks.
The instrument for eliciting the expert judgments was developed
by two information security specialists and two expert judgment
analysis specialists. The resultant instrument was validated using a
small set of information security experts.

Three scenarios were analyzed. The first was the case where all
reasonable steps have been taken to protect information assets and
systems from attacks (competent and protected case). The second
was the case where average or usual care has been taken to protect
information assets and systems (normal case). The third was
the case where the information systems and assets have been
competently managed but no special protection mechanisms are
employed (competent but not protected). It is clear that the
probability of a successful attack is smallest in scenario 1 but that
the rate of attacks is higher than in the other scenarios. This
matches well with our expectations for this scenario, since large
enterprises like banks, governments, and military offices have very
high rates of attacks but are generally well protected. The rate of
attacks in scenario 2 is smaller than in the other two scenarios, but
the rate of successful attacks is larger. For the third scenario, the
lack of protection mechanisms may attract attacks but the well-
managed aspect decreases the success rate somewhat.

This research illustrates the development of prior distributions
for the parameters of models for cyber attacks and uses expert
judgment results to develop the distributions.

In the very near term, a competently managed system with no
protections is slightly less likely to observe a successful attack, but
that advantage drops off over the longer term. The competently
managed and well-protected system is always less likely to
experience a successful attack as compared to the other two
scenarios. The generalized conclusion that derives from this
analysis is that when the attack rate is constant, an investment
in information security protections will provide a decrease of
approximately 99% in the average number of successful attacks
when protection moves from competent management (scenario 3)
to competent security (scenario 2). A further reduction of approxi-
mately 79% can be obtained by additional investments implement-
ing excellent security (scenario 1). When the attack rate is modeled
as power intensity NHPP, these percentages are 96% over a years
time when protection moves from competent management (sce-
nario 3) to competent security (scenario 2). Under this model, a
further reduction of approximately 68% over the year’s time can be
obtained by additional investments implementing excellent secur-
ity (scenario 1).

The decision on whether to invest or not to invest in information
security protections is of course dependent upon the unique
situation of an enterprise. However, for those enterprises with
high exposure or valuable assets, this analysis confirms our
intuition that reasoned investments in both competent security
management and protection technologies would be rational
decisions.
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